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What if I told you that...

You can run an AI algorithm that predicts 
mechanical failure in a $0.40 chip?

Object detection can be performed by a tiny 
device the size of your thumb?

A battery powered device can run an LLM and 
generate text in the palm of your hand?



  

AI Requires a Lot of Compute. 
Right?

● xAI’s Colossus Cluster

● 100,000 Nvidia H100 GPUs

● Requires 150 MW of power

● Used to train Grok



  

So, How Is Embedded AI Possible?

● Reduce scope of problem trying to solve

● Reduce model size and hence amount of training data

● Use specific, highly efficient code
● TensorFlow Lite, MS ELL, SynthInt NN

● Run on a low power, embedded system



  

Why AI at the Edge?

● Reduced latency
 Move computation as close to the data as possible

● Minimize network bandwidth requirements
 Ability to process this data offline

● Enhance privacy
 No need to upload data to the cloud



  

Structure of an ANN
● Neurons have weights and activation functions.
● The order of the approximation is easily tuned through the 

architecture of the ANN.



  

Neural Network Sizes
● Sperm whale: 500 billion neurons
● African elephant: 257 billion neurons
● Human brain: 86 billion neurons
● Fruit Fly: 135 thousand neurons
● Roundworm: 302 neurons

● State of the art ANNs:
● 2020: 16 million neurons
● 2023: 1.8 trillion neurons in GPT4

● Typically, my ANN applications to date: < 200 neurons



  

Training vs. Inference

● Inference is much faster than training

● Example
 May take about 20 minutes to train a 200 KB model

(using a powerful desktop PC)
 An MCU can inference this model in under 1 ms



  

Embedded Platforms: Jetson Nano

Quad-core Cortex-A57 @ 1.43 GHz

128-core Nvidia Maxwell GPU

4 GB LPDDR4

16 GB eMMC

LAN, USB, HDMI



  

Embedded Platforms: RPI CM4

Quad-core Cortex-A72 @ 1.5 GHz

8 GB SDRAM

32 GB eMMC

LAN, USB, HDMI



  

Embedded Platforms: OpenMV H7

480 MHz Cortex-M7 MCU

5 MP camera (2592 x 1944), IR option

2 MB flash, 1 MB SRAM, 32 MB SDRAM

SD Card to store model and data



  

Embedded Platforms: Portenta H7

Arduino

STM32H747 (Cortex-M7 @ 480 MHz + M4 @ 240 MHz)

Edge Impulse, MicroPython, TensorFlow Lite



  

Embedded Platforms: Google Coral

i.MX 8M SoC Cortex-A53

Google Edge TPU coproc.

8 GB eMMC

4 GB LPDDR

Wi-Fi, LAN, USB, A/V

https://coral.ai/products/dev-board/



  

Embedded Platforms: STM32 Disco

STM32H7@480 MHz

2 MB flash

1 MB SRAM

32 MB SDRAM

SD Card

LAN, USB, A/V



  

Embedded Platforms: STM32 Disco

OV5640 image sensor

5-Mpixel

8-bit color



  

Neural Processing Units (NPUs)

AI accelerators for microcontrollers

More energy efficient than CPUs and GPUs

Edge computing capabilities



  

Embedded Applications (ANN)
● Predictive analytics
● Object detection
● Biomarker recognition
● Handwriting recognition
● Speech recognition
● PID control loop tuning
● Adaptive motor control
● Robot gait control



  

Medical Device Locator
● Neural Network to interpret X,Y,Z location of a magnet
● Sensor readings: 4x4 array of 3-axis magnetometers
● ANN: 48/50(ReLU)/50(ReLU)/3(Linear)



  

Embedded Applications (LLM)
● Conversational user interface (CUI)

"Hey fridge, how many eggs do I have?"

● “Chat” with a small data set in a specific application

● Sentiment analysis



  

What is an LLM?
● LLM = “Large Language Model”

● Generative machine learning model that can 
comprehend and generate human language text



  

How Does an LLM Work?
● Sentences are split up into smaller units called tokens

● Embeddings turn the tokens into vectors of numbers

● Embeddings enrich tokenized data with meaning, 
allowing LLMs to comprehend context and patterns

● They are numerical representations of contextual 
similarities between words, and can be manipulated 
mathematically (king - man + woman = queen)



  

Transformer Architecture

● “Attention Is All You Need”, by 8 scientists at Google

● Human language is highly context-dependent

● Transformer able to learn context

● A mathematical technique called self-
attention is used to detect subtle ways that
elements in a sequence relate to each other



  

Transformer Architecture

● Encoder (left side) maps input sequences to 
a sequence of continuous representations

● Decoder (right side) receives encoder output
together with the output at the previous
time step to generate an output



  

Training an LLM

● Trained on tens of terabytes of data

● Curated data sets improve model quality

● Further trained via fine-tuning for a particular task



  

Popular LLMs

OpenAI ChatGPT

Anthropic Claude

Google Gemini

xAI Grok



  

Training Costs
GPT-3
● Cost $4.6m to train (45 TB compressed text) 
● Using 1024x A100 GPUs, researchers calculated that 

OpenAI could have trained GPT-3 in 34 days

GPT-4
● Cost $63m to train (Altman indicates $100m)
● Estimated 90-100 days to train



  

Local LLM
LLMs can be very large

Smaller models are available that may be run on a desktop

Model size reduction through quantization

llama3.1:8b 4.7 GB

llama3.1:70b 39 GB

llama3.1:405b 228 GB



  

Embedded LLMs for MCUs

Small memory footprint (5 – 30 MB)

Low power consumption

Reduced training data required



  

Embedded LLM Demo

● Demonstrate an LLM running in an STM32H7 MCU
480 MHz Cortex-M7, 2 MB flash, 1 MB SRAM, 32 MB DRAM

● Dynamically generates a random TinyStory

● Output via serial port

● MCU consumes 75 mA to run the demo



  

Embedded LLM Demo



  

Training the LLM
● Obtain data (9 GB of text in the TinyStories demo)

● Train a model on the data using PyTorch

● Convert the model for use by the llama2.c code

● Model in this demo was quantized to 8-bit

● Resultant model sizes:
4.6 MB (faster but less accurate)
19.9 MB (slower but more sensible)



  

Limitations

● As models get smaller or overquantized, they lose quality

● “Hallucinations” generate incorrect output at high confidence

● Training bias

● Explainability



  

Legal Implications
● IP ownership of training data and results

● Copyright infringement
 How does an AI implementation learn?
 How do we learn?

● Liability
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