

Machine LearningMachine Learning
in Compact, Low-Power Devicesin Compact, Low-Power Devices

Chris Cole, SynthInt TechnologiesChris Cole, SynthInt Technologies
chris@synthint.aichris@synthint.ai

What if I told you that...

You can run an AI algorithm that predicts
mechanical failure in a $0.40 chip?

Object detection can be performed by a tiny
device the size of your thumb?

A battery powered device can run an LLM and
generate text in the palm of your hand?

AI Requires a Lot of Compute.
Right?

● xAI’s Colossus Cluster

● 100,000 Nvidia H100 GPUs

● Requires 150 MW of power

● Used to train Grok

So, How Is Embedded AI Possible?

● Reduce scope of problem trying to solve

● Reduce model size and hence amount of training data

● Use specific, highly efficient code
● TensorFlow Lite, MS ELL, SynthInt NN

● Run on a low power, embedded system

Why AI at the Edge?

● Reduced latency
 Move computation as close to the data as possible

● Minimize network bandwidth requirements
 Ability to process this data offline

● Enhance privacy
 No need to upload data to the cloud

Structure of an ANN
● Neurons have weights and activation functions.
● The order of the approximation is easily tuned through the

architecture of the ANN.

Neural Network Sizes
● Sperm whale: 500 billion neurons
● African elephant: 257 billion neurons
● Human brain: 86 billion neurons
● Fruit Fly: 135 thousand neurons
● Roundworm: 302 neurons

● State of the art ANNs:
● 2020: 16 million neurons
● 2023: 1.8 trillion neurons in GPT4

● Typically, my ANN applications to date: < 200 neurons

Training vs. Inference

● Inference is much faster than training

● Example
 May take about 20 minutes to train a 200 KB model

(using a powerful desktop PC)
 An MCU can inference this model in under 1 ms

Embedded Platforms: Jetson Nano

Quad-core Cortex-A57 @ 1.43 GHz

128-core Nvidia Maxwell GPU

4 GB LPDDR4

16 GB eMMC

LAN, USB, HDMI

Embedded Platforms: RPI CM4

Quad-core Cortex-A72 @ 1.5 GHz

8 GB SDRAM

32 GB eMMC

LAN, USB, HDMI

Embedded Platforms: OpenMV H7

480 MHz Cortex-M7 MCU

5 MP camera (2592 x 1944), IR option

2 MB flash, 1 MB SRAM, 32 MB SDRAM

SD Card to store model and data

Embedded Platforms: Portenta H7

Arduino

STM32H747 (Cortex-M7 @ 480 MHz + M4 @ 240 MHz)

Edge Impulse, MicroPython, TensorFlow Lite

Embedded Platforms: Google Coral

i.MX 8M SoC Cortex-A53

Google Edge TPU coproc.

8 GB eMMC

4 GB LPDDR

Wi-Fi, LAN, USB, A/V

https://coral.ai/products/dev-board/

Embedded Platforms: STM32 Disco

STM32H7@480 MHz

2 MB flash

1 MB SRAM

32 MB SDRAM

SD Card

LAN, USB, A/V

Embedded Platforms: STM32 Disco

OV5640 image sensor

5-Mpixel

8-bit color

Neural Processing Units (NPUs)

AI accelerators for microcontrollers

More energy efficient than CPUs and GPUs

Edge computing capabilities

Embedded Applications (ANN)
● Predictive analytics
● Object detection
● Biomarker recognition
● Handwriting recognition
● Speech recognition
● PID control loop tuning
● Adaptive motor control
● Robot gait control

Medical Device Locator
● Neural Network to interpret X,Y,Z location of a magnet
● Sensor readings: 4x4 array of 3-axis magnetometers
● ANN: 48/50(ReLU)/50(ReLU)/3(Linear)

Embedded Applications (LLM)
● Conversational user interface (CUI)

"Hey fridge, how many eggs do I have?"

● “Chat” with a small data set in a specific application

● Sentiment analysis

What is an LLM?
● LLM = “Large Language Model”

● Generative machine learning model that can
comprehend and generate human language text

How Does an LLM Work?
● Sentences are split up into smaller units called tokens

● Embeddings turn the tokens into vectors of numbers

● Embeddings enrich tokenized data with meaning,
allowing LLMs to comprehend context and patterns

● They are numerical representations of contextual
similarities between words, and can be manipulated
mathematically (king - man + woman = queen)

Transformer Architecture

● “Attention Is All You Need”, by 8 scientists at Google

● Human language is highly context-dependent

● Transformer able to learn context

● A mathematical technique called self-
attention is used to detect subtle ways that
elements in a sequence relate to each other

Transformer Architecture

● Encoder (left side) maps input sequences to
a sequence of continuous representations

● Decoder (right side) receives encoder output
together with the output at the previous
time step to generate an output

Training an LLM

● Trained on tens of terabytes of data

● Curated data sets improve model quality

● Further trained via fine-tuning for a particular task

Popular LLMs

OpenAI ChatGPT

Anthropic Claude

Google Gemini

xAI Grok

Training Costs
GPT-3
● Cost $4.6m to train (45 TB compressed text)
● Using 1024x A100 GPUs, researchers calculated that

OpenAI could have trained GPT-3 in 34 days

GPT-4
● Cost $63m to train (Altman indicates $100m)
● Estimated 90-100 days to train

Local LLM
LLMs can be very large

Smaller models are available that may be run on a desktop

Model size reduction through quantization

llama3.1:8b 4.7 GB

llama3.1:70b 39 GB

llama3.1:405b 228 GB

Embedded LLMs for MCUs

Small memory footprint (5 – 30 MB)

Low power consumption

Reduced training data required

Embedded LLM Demo

● Demonstrate an LLM running in an STM32H7 MCU
480 MHz Cortex-M7, 2 MB flash, 1 MB SRAM, 32 MB DRAM

● Dynamically generates a random TinyStory

● Output via serial port

● MCU consumes 75 mA to run the demo

Embedded LLM Demo

Training the LLM
● Obtain data (9 GB of text in the TinyStories demo)

● Train a model on the data using PyTorch

● Convert the model for use by the llama2.c code

● Model in this demo was quantized to 8-bit

● Resultant model sizes:
4.6 MB (faster but less accurate)
19.9 MB (slower but more sensible)

Limitations

● As models get smaller or overquantized, they lose quality

● “Hallucinations” generate incorrect output at high confidence

● Training bias

● Explainability

Legal Implications
● IP ownership of training data and results

● Copyright infringement
 How does an AI implementation learn?
 How do we learn?

● Liability

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

